Перед вами часы. Сколько существует положений стрелок, по которым нельзя определить время, если не знать, какая стрелка часовая, а какая - минутная? (Считается, что положение каждой из стрелок можно определить точно, но следить за тем, как стрелки двигаются, нельзя)
На рисунке приведен пример одного из таких положений стрелок.
Ответ
Предположим, что рядом с нашими часами (справа) другие, воображаемые, которые идут ровно в 12 раз быстрее. Пустим и те и другие часы одновременно, когда они показывают 12 часов; тогда часовая стрелка правых часов все время совпадает с минутной левых. Ясно, что интересующие нас «неразличимые» положения стрелок – в точности те, когда часовая стрелка левых совпадает с минутной правых, быстрых часов. Сколько же раз это произойдет? Из 12*12=144 оборотов, которые сделает минутная стрелка правых часов за то время, пока часовая стрелка «нормальных» сделает один оборот, на каждом обороте произойдет одно совпадение (включая начальную точку первого оборота); из них нужно исключить 12 случаев, когда совпадают все четыре стрелки, - остается 132. Ответ: существует 132 положения стрелок, удовлетворяющих условиям задачи.
Комментариев нет:
Отправить комментарий