1) в итоге все коробки должны иметь разную массу;
2) чем тяжелее коробка, тем меньшее количество шариков в ней должно находиться.
Можно ли это сделать? И если можно, то как?
update
Первый - Дмитрий.Ответ
Нельзя.
Предположим, что выполнить условия можно. Сумма масс всех шариков равна 5050. Масса самой тяжёлой коробки должна быть больше, чем среднее арифметическое масс всех коробок, то есть больше, чем 505 (веса коробок не учитываем). Так как шарика с массой более 100 грамм нет, то в самой тяжёлой коробке должно быть не меньше 6 шариков. Следовательно, общее количество шариков должно быть не меньше, чем 6+7+8+...+15=105. Но это противоречит условию - в наборе всего 100 шариков.
Предположим, что выполнить условия можно. Сумма масс всех шариков равна 5050. Масса самой тяжёлой коробки должна быть больше, чем среднее арифметическое масс всех коробок, то есть больше, чем 505 (веса коробок не учитываем). Так как шарика с массой более 100 грамм нет, то в самой тяжёлой коробке должно быть не меньше 6 шариков. Следовательно, общее количество шариков должно быть не меньше, чем 6+7+8+...+15=105. Но это противоречит условию - в наборе всего 100 шариков.